
Intermediate Code

See Chapter 5, especially Section 5.3

We are using parse trees as intermediate
representations for BLP programs. There are other
options:

• There are other graph-based representations
• There are linear representations, such as 3-

address code. These often simulate assembly
languages.

• Interpreted languages often use a higher-level
intermediate language. Java byte code, for
example, looks closer to a programming
language than an assembly language.

Here is an example of 3-address code

0 id z

1 id x

2 id y

3 id p

4 int constant 2

5 int constant 3

6 * (4) (1)

7 * (5) (2)

8 + (6) (7)

9 * (3) (8)

10 = (0) (7)

2*x

3*y

2*x+3*y

p*(2*x+3*y)

z = 3*y

Goals for intermediate representations:

• Simple structure, so final code generation is
easy and optimizations are possible.

• Make few assumptions about the target
machine so the code is portable.

• If the intermediate representation is
executable by a simulator, decoupling of the
front and back ends is easy.

Here are some typical 3-address statements:

• arithmetic expressions with binary ops
• assignments
• goto Label
• if (condition) goto L
• arg x (push x onto the stack in preparation for

a call)
• call f n (call f with n arguments)
• return y

3-address code is often implemented with either
quads or triples.

Example: x = y*z+w

* y z t1

+ t1 w t2

= x t2

* y z

+ (0) w

= x (1)

(0)

(1)

(2)

Quads Triples

Quads are easy to rearrange for optimization, but
the symbol table becomes large because of the
temporaries.

Triples avoid the temporaries but are hard to move
around because that would require finding and
changing indices.

So what are the advantages of 3-address code, or
similar intermediate representations over the tree-
based representation we use? What are the
disadvantages?

